

Overview of the Workshop

Session 1	Welcome \& Introduction Breakout Session 1 Teaching and Learning approach to Number Introducing the Argand Diagram
Session 2	Multiplication of Complex Numbers Breakout Session 2
Session 3 Stretch Break	
	DeMoivre's Theorem Breakout session 3 Conclusion

Protocols \& Technology

Chat function
https://tinyurl.com/complexnumbers-AD

Polls

Key Messages

Understand the importance of using a geometric view to make sense of complex numbers.

Understand the importance of extending prior knowledge by using a constructivist approach.

By the end of this workshop, participants will

- engage with constructivist tasks that will encourage students to become more confident in their mathematical ability and develop their critical-thinking skills.
- recognise the value of making the connection between the geometric view and the algebraic view of complex numbers.
- appreciate the importance of reflecting on practice, the value of effective collaboration and the long-term benefits of engaging with continual professional development.

Feedback

Introduction of Complex Numbers

Prior Content Knowledge

Investigation of multiplication using models including the number line. Select and use suitable strategies for finding solutions to quadratic equations. Junior Cycle Specification pages 15, 19, Junior Certificate Syllabus pages 22, 29.

Work with complex numbers in rectangular form to solve quadratic equations Leaving Certificate Syllabus page 39

Introduction of Complex Numbers

Key Content for this task

Students should be able to illustrate complex numbers on an Argand diagram.
Leaving Certificate Syllabus page 29

Pedagogy

Constructivism

Methodologies

Effective Questioning Group Work

Constructivism

Social and collaborative learning activities
Learning activities set in a meaningful context

Learners given the freedom to understand and construct meaning at their own pace

Chuang \& Rosenbusch (2005)

Constructivism

"A constructivist pedagogical orientation supports teachers in effectively using digital technologies with their students i.e. learners are actively involved in a process of determining meaning and knowledge for themselves" DES (2015)

Prior Knowledge:
 Primary Approach

What approaches from primary school might a first year student have taken to explore multiplication?

Linear method Distribution Array method

Skip counting method

Prior Knowledge:
Exploration of Multiplication

Student Tasks:

Open Question
Think-Pair-Share
Group Discussion

Concluding Statement

كـهR

Prior Knowledge: Exploration of Multiplication

Class Discussion

Present concluding
statements
Question/Critique
Verify/Justify
Summary of key learning Individual Reflection

Prior Knowledge:
 Exploration of Multiplication

Student Task:

If $A, B \in \mathbb{R}$, Investigate the effect on A of multiplying by B.
$A, B \in \mathbb{R}^{+}$
$A \in \mathbb{R}^{+}, B \in \mathbb{R}^{-}$
$A \in \mathbb{R}^{-}, B \in \mathbb{R}^{+}$
$A, B \in \mathbb{R}^{-}$
$(A$ or $B=0)$

Prior Knowledge:
 Exploration of Multiplication

Summary of Key Learning

For $A, B \in \mathbb{R}$,
If $B>0$ there is a scaling by a factor of B and a 0° rotation. If $B<0$ there is a scaling by a factor of B and $a 180^{\circ}$ rotation.
180° Rotation

Prior Knowledge:
 Exploration of Multiplication

Student Task:

If $A \in \mathbb{R}, B \in \mathbb{R}^{+}, n \in \mathbb{N}$
What is the effect on A of multiplying by $(B)^{n}$?
A is scaled by a factor of B^{n} and there is a rotation of 0°

Extension:
What is the effect on a real number A of multiplying by $(-B)^{n}$?
 A is scaled by a factor of B^{n} and there is are $n \times 180^{\circ}$ rotations.

Prior Knowledge:

Approach to Exploring Functions

Junior Cycle Functions:

 'no roots in the real number system'Senior Cycle Functions:

$$
\begin{array}{ll}
b^{2}-4 a c<0 & \\
x= \pm \sqrt{-1} & x^{2}-6 x+13=0 \\
x= \pm i & x=3 \pm 2 i \\
&
\end{array}
$$

Introducing the Imaginary Axis

What is the effect on a real number A of multiplying by $(-B)^{n}$? A is scaled by a factor of B^{n} and there are $\mathrm{n} \times 180^{\circ}$ rotations. What is the effect on a real number A of multiplying by $(-1)^{1 / 2}$? A is scaled by a factor of 1
$1 / 2$ rotation of $180^{\circ}:=90^{\circ}$ rotation

Summary of Key Learning

What is the effect on a real number A of multiplying by i? There is a rotation of 90°.

Q \& A

Multiplication of Complex Numbers

Prior Content Knowledge

Illustrate complex numbers on an Argand diagram. Interpret the modulus as distance from the origin. Multiplication of complex numbers of the form $\mathrm{z}=a \mathrm{i}$.
 Leaving Certificate Syllabus page 29

Multiplication of Complex Numbers

Key Content for this task

Investigate multiplication and division with complex numbers in rectangular form a+bi.
Calculate the complex conjugate.

Leaving Certificate Syllabus page 29

Pedagogy

Constructivism

Methodology
Effective Questioning
Group Work

PDST를

Multiplication of Complex Numbers

Task:

$$
z_{1}=1+2 i, z_{2}=2+3 i, \text { find } z_{1} \times z_{2}
$$

Distributive Law

$$
\begin{aligned}
z_{1} \times z_{2} & =(1+2 i)(2+3 i) \\
& =1(2+3 i)+2 i(2+3 i) \\
& =2+3 i+4 i+6 i^{2} \\
& =2+7 i-6 \\
& =-4+7 i
\end{aligned}
$$

The Array Model

	2	$3 i$
1	2	$3 i$
$2 i$	$4 i$	$6 i^{2}$

$$
\begin{aligned}
z_{1} \times z_{2} & =2+3 i+4 i+6 i^{2} \\
& =2+7 i-6 \\
& =-4+7 i
\end{aligned}
$$

Multiplication of Complex Numbers

 (Geometric Approach)

風

Multiplication of Complex Numbers

Multiplication of Complex Numbers

Collaborative Task:

Choose a role, complete the investigation and record the results in the master table.

$$
\begin{aligned}
& \text { Group Roles: } \\
& \text { Record (Input to table) } \\
& \text { Method } 1 \text { (Geogebra File) } \\
& \text { Method } 2 \text { (Trigonometry) } \\
& \text { Verifier (Confirm Results) }
\end{aligned}
$$

Summary of Key Learning

Student key learning:

When two complex numbers are multiplied their moduli are multiplied and their arguments are added.

Reflection:

What elements of this task make a good learning experience for students?

Stretch Break

Multiplication of Complex Numbers

Prior Content Knowledge

Trigonometric Ratios and Pythagoras' Theorem.
Junior Cycle Specification page 17, Junior Certificate Syllabus page 20.

Multiplication of complex numbers.
Polar form of a complex number.
Leaving Certificate Syllabus page 29, 39.

Multiplication of Complex Numbers

Key Content for this task

DeMoivre's Theorem.
Polar form of a complex number
Leaving Certificate Syllabus page 39

Pedagogy

Constructivism

Methodology
Effective Questioning
Structured Problem Solving

Prior Knowledge:
 Geometric View of Multiplication

Task 1

Multiplication of Real Numbers $a \times b$, where $a, b \in \mathbb{R}$
If $b>0$ there is a scaling by a factor of b and 0° rotation.
If $b<0$ there is a scaling by a factor of b and 180° rotation.
180° Rotation

Prior Knowledge:
Geometric View of Multiplication

Multiplication by $(-1)^{1 / 2}$ Scaling by a factor of 1 Rotation of 90°

Prior Knowledge:
Geometric View of Multiplication

Multiplication of Complex Numbers of the form bi Scale factor of b
If $b>0$ Rotation of 90°
If $b<0$ Rotation of 270°

Prior Knowledge:
 Multiplication of Complex Numbers

Task 2

What are the effects of multiplying z_{1} by z_{2}, if both z_{1} and z_{2} are complex numbers in the form $(a+b i)$, where $a, b \in \mathbb{R}$?
$\left|z_{1}\right|$ is scaled by a factor of $\left|z_{2}\right|$ (Product of the Moduli)
z_{1} is rotated by the argument of z_{2} (Sum of the Arguments)

Prior Knowledge:
 Trigonometry

$$
\begin{array}{rlr}
\operatorname{Sin} \theta=\frac{b}{r} & \operatorname{Cos} \theta=\frac{a}{r} \\
r \operatorname{Sin} \theta=b & r \operatorname{Cos} \theta=a
\end{array}
$$

Prior Knowledge:
 Polar Form of a Complex Number

$$
\begin{aligned}
z & =a+b i \\
z & =r \operatorname{Cos} \theta+i r \operatorname{Sin} \theta \\
z & =r(\operatorname{Cos} \theta+i \operatorname{Sin} \theta)
\end{aligned}
$$

DeMoivre's Theorem

If $z=a+b i$, where $a, b \in \mathbb{R}$, what is the effect on z of raising z to the power of n $\left(z^{n}\right)$, where $n \in \mathbb{Z}$?

Summary of Key Learning

Multiplication	Argument (angle $\theta)$	Modulus (r)
$z \times z=z^{2}$	Doubled $(\mathbf{2 \theta})$	Squared $\left(r^{2}\right)$
$z \times z \times z=z^{3}$	Tripled $(\mathbf{3 \theta})$	Cubed $\left(r^{3}\right)$
$z \times z \times z \times z=z^{4}$	Multiplied by $\mathbf{4}(\mathbf{4 \theta})$	Multiplied by itself 4 times $\left(r^{4}\right)$
$z \times z \times z \times z \times z=z^{5}$	Multiplied by $\mathbf{5}(\mathbf{5 \theta})$	Multiplied by itself 5 times $\left(r^{5}\right)$
z^{n}	Multiplied by $\mathbf{n}(\mathbf{n} \boldsymbol{\theta})$	Multiplied by itself n times $\left(r^{\boldsymbol{n}}\right)$

Summary of Key Learning

$$
\begin{aligned}
& z=a+b i \\
& z=r \operatorname{Cos} \theta+i r \operatorname{Sin} \theta \\
& z=r(\operatorname{Cos} \theta+i \operatorname{Sin} \theta)
\end{aligned}
$$

$[1]$

$$
z^{n}=r^{n}(\operatorname{Cos} n \theta+i \operatorname{Sin} n \theta)
$$

Extending the Learning

Generalise your thinking:

$$
z^{n}=r^{n}(\operatorname{Cos} n \theta+i \operatorname{Sin} n \theta)
$$

If we were given a value for z^{n}, how many roots would z^{n} have? How would you find these roots?

Applying the Learning

If $z=1+i$, find z^{5} in as many ways as possible.
Which of these methods would you use to find z^{10} ?

Lesson Study

Key Messages

Understand the importance of using a geometric view to make sense of complex numbers.

Understand the importance of extending prior knowledge through using a constructivist approach.

PDST Post Primary Maths Team

Team Leader

Stephen Gammell
stephengammell@pdst.ie

Administrator
Gráinne Haughney
grainnehaughneymdt@pdst.ie

General Enquiries:
Postprimarymaths@pdst.ie

Advisors:

Angela Dwane angeladwane@pdst.ie Dympna McCoy dympnamccoy@pdst.ie warrenmcintyre@pdst.ie Arlene Murphy arlenemurphy@pdst.ie michaelwalsh@pdst.ie Darren Murphy darrenmurphy@pdst.ie Twitter
@ProjectMaths_ie

Supports Provided by PDST

School Support

Book a school visit

Contact us:
postprimarymaths@pdst.ie

References

Chuang, H. \& Rosenbusch, M. (2005). Use of digital video technology in an elementary school foreign language methods course. British Journal of Educational Technology. 36, 5, 869--880 DES. (2017). Digital Learning Framework for post-primary schools. Dublin
DES. (2017). STEM Education Policy Statement. Dublin
DES. (2015). Digital Strategy for Schools. Enhancing Teaching, Learning and Assessment. Dublin NCCA. (2016) Junior Cycle Specification. Dublin.
NCCA. (2013) Junior Certificate Mathematics. Dublin.
NCCA. (2012) Leaving Certificate Mathematics. Dublin.

