Exploring the relationship between the Argument and Modulus when multiplying complex numbers

Follow this link to answer the questions below: https://www.geogebra.org/classic/bmedez74

How do we find the Argument of a complex number?

What do you notice about the Arguments when 2 complex numbers are multiplied?

How do we find the modulus of a complex number?

What do you notice about the moduli when 2 complex numbers are multiplied?

What do you think would happen if we were to multiply a complex number by itself?

What would happen if we were to cube that complex number?

Can you see a pattern? (click on the button to reveal exponents of z)

The effect of multiplying a complex number by itself (complete the table):

Multiplication of a complex number	Argument (angle θ)	Modulus (r)
$z \times z = z^2$	Double the argument (20)	Square the modulus (r ²)
z x z x z =		
z ⁿ		

The effect of multiplying a complex number by itself:

Multiplication	Argument (angle θ)	Modulus (r)
z x z = z ²	Doubled (2θ)	Squared (r ²)
z x z x z = z ³	Tripled (30)	Cubed (r ³)
$z \times z \times z \times z = z^4$	Multiplied by 4 (40)	Multiplied by itself 4 times (r ⁴)
z x z x z x z x z x z = z ⁵	Multiplied by 5 (50)	Multiplied by itself 5 times (r ⁵)
z ⁿ	Multiplied by n (nθ)	Multiplied by itself n times (r ⁿ)

De Moivre's theorem: $z^n = r^n (\cos n\theta + i \sin n\theta)$