Exploring the relationship between the Argument and Modulus when multiplying complex numbers

Follow this link to answer the questions below: https://www.geogebra.org/classic/bmedez74
How do we find the Argument of a complex number?

What do you notice about the Arguments when 2 complex numbers are multiplied?

How do we find the modulus of a complex number?

What do you notice about the moduli when 2 complex numbers are multiplied?

What do you think would happen if we were to multiply a complex number by itself?

What would happen if we were to cube that complex number?

Can you see a pattern? (click on the button to reveal exponents of z)

The effect of multiplying a complex number by itself (complete the table):

Multiplication of a complex number	Argument (angle $\boldsymbol{\theta}$)	Modulus (r)
$\mathbf{z x z = z ^ { 2 }}$	Double the argument (20)	Square the modulus ($\left.\mathbf{r}^{\mathbf{2}}\right)$
$\mathbf{z x z x z =}$		
z		

The effect of multiplying a complex number by itself:

Multiplication	Argument (angle θ)	Modulus (r)
$\mathrm{zx} \mathrm{z}=\mathrm{z}^{2}$	Doubled (20)	Squared (r^{2})
$z \mathrm{xzxz}=\mathrm{z}^{\mathbf{3}}$	Tripled (30)	Cubed (r^{3})
zxzxzxz= z^{4}	Multiplied by 4 (40)	Multiplied by itself 4 times (r^{4})
zxzxzxzxz= ${ }^{5}$	Multiplied by 5 (50)	Multiplied by itself 5 times (r^{5})
$z^{\text {n }}$	Multiplied by $\mathrm{n}(\mathrm{n} \theta$)	Multiplied by itself n times (r^{r})

De Moivre's theorem: $z^{n}=r^{n}(\cos n \theta+i \sin n \theta)$

